References for: Numerical Symbols Count for Mathematical Success (DSF Bulletin Vol. 53 – Spring 2017)

References for Article: Numerical Symbols Count for Mathematical Success

Publication: DSF Bulletin – Volume 53 – Spring 2017

Published: November 2017

Bradley, L., & Bryant, P. E. (1978). Difficulties in auditory organisation as a possible cause of reading backwardness. Nature 271, 764—747. http.// 038/ 271 746aO

Bugden, S., & Ansari, D. (201 1). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, I /8(1), 32—44. http://doi.orWIO.1016/j.cognition. 2010.09.005

Butterworth, B. (2008). Developmental dyscalculia. In J. Reed & J. W. Rogers (Eds.), Child neuropsychology: Concepts, theory, and practice (pp. 357—3 74). Oxford, UK: Blackwell.

Chu, F. W, vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205-212. 0.101 6/j.jecp.201 5.01.006

Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63—68

De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: Evidence from developmental dyslexia. Neuropsychologia, 48(1 4), 3973—3981. O. 1 01 6/j. neuropsychologia.2010.1 0.018

De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278—292. 0.1016/ j.jecp.2010.09.003

De Smedt, B., Taylor, J., Archibald, L., & Ansari, D. (2010). How is phonological processing related to individual differences in children’s arithmetic skills? Developmental Science, 13(3), 508-520.

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, R, & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446.

Holloway, I.D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29.

Hulme, C., & Snowling, M. J. (2013). Learning to read: What we know and what we need to understand better. Child Development Perspectives, 7(1), 1—5. http•//doi.

Jordan, N. C., Glutting, J., Ramineni C., & Watkins, M. W. (2010). Validating a number sense screening tool for use in kindergarten and first grade: Prediction of mathematics proficiency in third grade. School Psychology Review, 39(2), 181—195.

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8—9-year-old students. Cognition, 93(2), 99—125.

Landerl, K., Göbel, S. M., & Moll, K. (2013). Core deficit and individual manifestations of developmental dyscalculia (DD): The role of comorbidity. Trends in Neuroscience and Education, 2(2), 38—42.

LeFevre, J. A, Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J. , Kamawar, D.. & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 8/(6), 1753—1767.

Lyons, l. M., & Ansari, D. (2015). Numerical order processing in children: From reversing the distance-effect to predicting arithmetic, 9(4), 207—221.

Lyons, l. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1—6. Developmental Science, J 7(5),

Mazzocco, M. M., Feigenson, & Halberda, J. (201 1). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLOS ONE, 6(9), e23749.

Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14—20. 0.1016TJ.cobeha.2016.04.006

Mussolin, C., Mejias, S., & Noél, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, //5(1), 10—25.

Nosworthy, N., Bugden, S., Archibald, Evans, B., & Ansari, D. (2013). A twominute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. Plos ONE, 8(7), e67918.

Purpura, D. J., Baroody, A. J. , & Lonigan, C. J. (2013). The transition from informal to formal mathematical knowledge: Mediation by numeral knowledge. Journal of Educational Psychology, 105(2), 453-464.

Rousselle, L., & Noél, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non symbolic number magnitude processing. Cognition, 102(3), 361—395. j.cognition.2006.01.005

Sella, F., Tressoldi, R, Lucangeli, D.. & Zorzi, M. (2016). Training numerical skills with the adaptive videogame “The Number Race”: A randomized controlled trial on preschoolers. Trends in Neuroscience and Education, 5(1), 20—29. http://doi. org/10.101 6/j.tine.2016.02.002

Skwarchuk, S. L., Sowinski, C., & LeFevre, J. A. (2014). Formal and informal home learning activities in relation to children’s early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 121, 63—84.

Vanbinst, K., Ansari, D., Ghesquiére, R, & De Smedt, B. (2016). Symbolic numerical magnitude processing is as important to arithmetic as phonological awareness is to reading. PLoS ONE, 1 1(3), eol 51045. 371 /journal.pone.01 51045

Vanbinst, K., Ghesquiére, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 153—160. 0.101 6/j.lindif. 2014.12.004

Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155—193.

This entry was posted in References, Uncategorized. Bookmark the permalink.

Comments are closed.